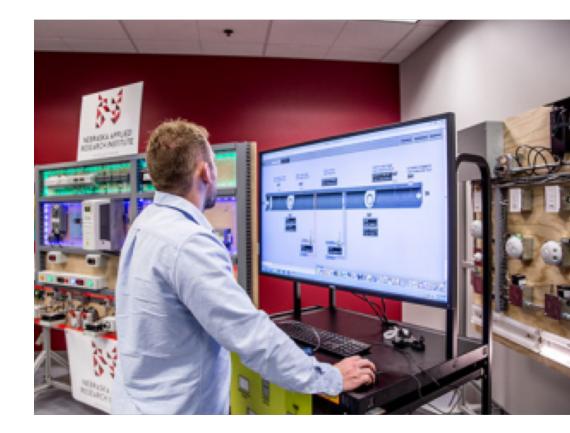

INDUSTRY CHALLENGES Design, Construction, and Operation of SBIoT Systems

SBIoT Today

Operational Technology

How we Measure Success



The Challenge = The "Gap"

BENEFITS

SBIoT Today

- Through the Integration of Field Sensors -- Data Analytics -- Field Controllers, we can provide a more Safe and Efficient environment for people.
- Field Sensors, Controllers, and the Systems they report to may be referred to as "Operational Technology"

WHAT IS OPERATIONAL TECHNOLOGY (OT)?

Technology which controls or operates the Physical Environment

- 1. Building Management Systems (BMS or BAS)
- 2. Chilled Water System, Air Handling Units, VFDs, Boiler Control
- 3. Physical Security; Access Control and Cameras
- 4. Site or Building Lighting Control
- 5. Fire Alarm, Fire Protection, Mass Notification
- 6. Generator, PSG, Automatic Transfer Equipment
- 7. UPS, Energy Management System, Switchgear
- 8. Elevators, Pneumatic Tube
- 9. Medical Equipment (MRI, CT-Scan, Da Vinci, etc.)
- 10. Fuel Storage or Pumping Stations
- 11. SCADA, DCS, PLC, Protective Relays
- 12. Cars, Military Vehicles
- 13. Diagnostic Test & Calibration Equipment

IT AND OT DIFFERENCES

	Information Technology	Operational Technology
Protocols & Encryption	Standards	Numerous open serial protocols
Component Locations	Typically Accessible	May be poorly accessible
Support	Open	Vendor representative
Risk Management (CIA)	Data <u>C</u> onfidentiality	Human safety, system <u>A</u> vailability
Component Lifetime	3-5 years	10-15 years
Availability	"server will be down 12a-6a"	Outages planned weeks in advance
Change Management	SOP	Focus on operations
Cyber Security Awareness & Tools	Inherent	No serial based tools
Approved Cyber Component List	Typical	None

IT AND OT HAVE RELATED CYBER RISK

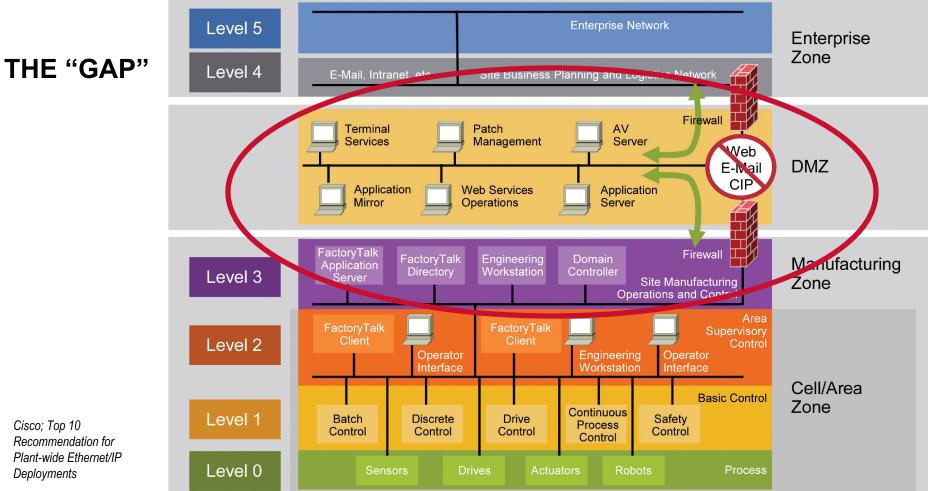
(SIMPLIFIED)

Stuxnet IT Target Hack Slammer Worm "Casino Fish-Tank Hack" GhostExodus Ukraine 2015, 2016 Manhattan Dam Attack Jeep Hack

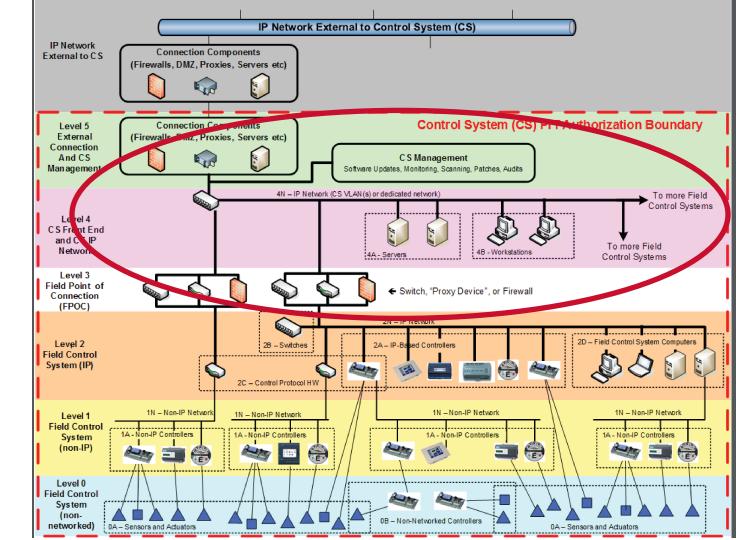
HOW DO WE MEASURE SUCCESS INTEGRATING IT AND OT

Of a Smart Building? A Smart City? A Smart Utility System?

Success may be Measured by:


- The Sustainability of the "Smart" use-case
 - $_{\odot}\,$ Does the outcome meet the expectations of the user's vision / intent / need
 - Does the use-case still work after a generation of technology (2-10 years from now)
- The Cyber Physical protection of the "Smart" use-case
 - $_{\odot}\,$ As OT becomes more IP enabled, the Cyber-risk landscape expands

NEXT STEP


- How do we properly converge the IT and OT Networks, realizing the desired outcomes of Sustainable and Secure Use-Cases?
 - Taking advantage of IP enabled OT devices

Cisco; Top 10 Recommendation for Plant-wide Ethernet/IP Deployments

UFC 4-010-06 Fig 2-1

The Gap is finding qualified people to Design, Build, and Operate SBIoT systems

Designer

• Finding People with the understanding of how to <u>correctly scope</u> SBIoT integrated technology use-cases, which meet user requests, and in a way which can realistically be competitively bid.

Contractor

 Finding People comfortable working outside of their technology silo's, <u>applying</u> SBIoT <u>available</u> <u>manufacturer technology</u> to correctly achieve use-cases, and interfacing with the Owner IT group.

Owner

 Finding People who can <u>vision</u> the implementation of use-cases, provide and enforce policies and procedures and configuration parameters, and <u>maintain</u> SBIoT use-cases for the life of the building.

The Gap is finding qualified people to Design, Build, and Operate SBIoT systems

Designer

- Finding People with the understanding of how to correctly scope SBIoT integrated technology use-cases, which meet user requests, and in a way which can realistically be competitively bid.
 - $_{\odot}\,$ "Integration Dreaming" with each Owner $\underline{user-group}$
 - o "Integration Reality" with Owners leadership
 - 。 Keeping up-to-date with manufacturer offerings
 - Develop <u>specifications</u> standards for successful Network designs
 - Integrated Building Systems (IBS) <u>specification</u> clearly defining contractor / manufacturer responsibility for each use-case
 - o Defining OT Test Bed requirements

The Gap is finding qualified people to Design, Build, and Operate SBIoT systems

Contractor

- Finding People comfortable working outside of their technology silo's, applying SBIoT available manufacturer technology to achieve use-cases
 - $_{\odot}~$ Taking integration $\underline{methods}$ to the next level per the IBS specification.
 - o Working closely with each use-case component/device manufacturer.
 - Coordinating network connections and protocols.
 - o Building use-case efforts into the construction schedule
 - Constructing the OT Test-Bed at each phase of the construction schedule.

The Gap is finding qualified people to Design, Build, and Operate SBIoT systems

Owner

- Finding People who can vision the implementation of use-cases, provide and enforce policies and procedures and configuration parameters, and maintain SBIoT use-cases for the life of the building.
 - Network (IT/OT) rules-of-engagement standards for all IoT devices
 - Developing OT configuration requirements
 - Developing IT policies and procedures when interfacing with OT IP equipment (inventory standards)
 - 。 SOP for OT test-beds, pen testing, and patching procedures
 - Continuous commission use-cases across enterprise network

ADDITIONAL OT SKILL SETS

Finding qualified persons (in addition to Designers, Contractors and Owners) with OT knowledge for:

- <u>Technical Standards</u> Committees
- Safe manufacturer component end-of-life replacement plan
- Manufacturer technical support
- Commissioning Agents
- Industry tool development for network optimization
- OT Network intruder alert, guard rails, and incident response software
- Test and Development Environment (TDE) <u>Test Bed Development Engineers</u>
- Client based risk and defense-in-depth analysis / solutions,

THE "GAP" SKILLSETS Embracing the Converged Network.

"...A <u>cross-functional</u> team of control engineers, control system operators, and IT security professionals needs to <u>work closely</u> to <u>understand the possible implications</u> of the installation, operation, and maintenance of security solutions in conjunction with control system operation. <u>IT and OT professionals</u> need to understand the <u>reliability impacts</u> of information security technologies before deployment ..."

(part NIST 800-82 rv2)

WHAT IS OUR GOAL?

✤ Explore the benefits of smart buildings, and challenges preventing user adoption.

✤ Identifying curriculum enabling a sustainable and secure SBIoT vision.

Tim Koch Engineering Principal HDR tim.koch@hdrinc.com 402-850-1824

